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(block 20 continued)

objects that is consistent with what is known.

This paper examines closely the properties and the semantics underlying cir-
cumscription, considering both its expressive power and its limitations. In
addition we study circumscription's relationship to several related formalisms,
such as negation by failure, the closed world assumption, default reasoning
and Planner's THNOT. In the discussion a number of extensions to circumscription
are proposed, allowing one to tightly focus its scope of applicability. In ad-
dition, several new rules of conjecture are proposed based on the notions of
relevance and minimality. Finally a synthesis between the approaches of
McCarthy and Konolige is used to extend circumscription, as well as several
other rules of conjecture, to account for resource limitations.
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1. Introduction
,,.,.

The central concerns of logic, from the perspective of philosophy, have been the pursuit of truth

and the investigation of the argumentation process. [he focus of logic involves answering questions

like: "What is the meaning of truth?", "How does one distinguish between valid and invalid

arguments?", and "What does it mean for a statement to logically follow from another?" Al, on the

other hand, is concerned with what constitutes intelligence. Al focuses on such questions as "What

is the meaning of 'intelligence'?". "How does an intelligent agent perceive, reason about and interact

with its environment?". "How does the agent modify its behavior based on experience?", and "How

does the agent cope with its own limitations and the limitations imposed by its surroundings". Much

of the formalism developed in logic to describe the meaning of truth and argumentation is applicable

to Al; alone, however, this formalism is not wholly adequate. The problem is that logic in the

philosophic sense is concerned with the meaning of truth independent of the limitations of any

particular intelligent agent; Al. on the other hand, is very much concerned with how an intelligent

agent copes with its limitations when trying to discover the truth about a matter.

One viewpoint taken in Al, and the one examined in this paper, is to view traditional logic formalisms

as providing a model of an "ideal" agent who is both omnipotent and omniscient, and then to explore

ways in which these logics can be modified to account for the limitations of intelligent agents in the

real world. These limitations take on many forms, each resulting in an agent having incomplete or

incorrect knowledge of the world. Konolige [Konolige 84], for example, discusses three forms of

incompleteness resulting from reasoning based on 1) limited computational resources, 2) logically

incomplete inference rules and 3) an inability to focus on relevant facts. McCarthy [McCarthy 80a,

concentrates on the way in which people are able to jump to certain conclusions when faced with a

situation where not all of the relevant information is available.

This paper examines the approaches taken by McCarthy and Konolige for the problem of dealing

with incomplete knowledge about the physical world, focusing on circumscription and related

techniques for "jumping to conclusions". The paper begins with a summary of the problems

addressed and the approaches taken by McCarthy and Konoliqe, respectively. The remainder of the

paper examines the properties of, and the relationship between, McCarthy's ideas on "simplicity" (or

minimality) and Konolige's ideas on "relevance". This portion of the paper is roughly broken into two

parts.

rhe first part begins with an informal discussion of the semantic3 of circumscription and its relation

0 to techniques proposed by other researchers amound the same time to cope with incomplete

.o -..- knowledge. This analysis leads to a generalization of circumscription that provides a means of

S,". ,"".' " , S " ,. . " ., " ..-. ,, .••



focusing Cii Cuiiiscription Onl the relevant portion of the donmaii and eincomnpasses sevvral earlier

-,

techiqL(WS. In additioni, several new techniques areU poposed , piroviding vatiationS oii

circuimscription's themne of mnininialily. During li; first part it is asstiiiid that the~ roasoniiiq agci t

- that uses circumscription is logically Cmplete aouti1.gh not omniscient and thus is not constraiined by

physical limitations.

The second part discusses the relationship between circtlniscirption and Konolige's work on

relevance, when applied to resource limited reasoning. rhis part begins with a discussion of some of

the computational bottle necks involved in computing circumscription. Next, I discuss Konolige's

notion of circuinscriptive ignorance. a technique that allows a resource limited agent to focus on only

the relevant information for a particular problem. Konolige's result is then used to extend McCarthy's

circumscription, and several other rules of conjecture, to make explicit the notion of ignoring

"irrelevant facts." Finally, the paper concludes with a short summary.

2. McCarthy's Circumscription

.' People are often faced with situations where incomplete information is specified. For example, in

the missionary and cannibal problem we are presented with the task of moving two mutually

antagonistic groups of people across a river, given a small boat. With only this information it is not

possible to solve the problem; for example, the boat may not work correctly, due to a number of

possible failures, or there may be an alternate form of transportation available, such as a helicopter,

ferry, or windsurferl. To qualify all the things that are not the case could require an infinite amount of

information and thus is infeasible for most problems. Nevertheless people are able to solve this and

similar types of problems, using only the information at hand.

To solve this problem people will jump to a number of conclusions. For example, most people

assume that the boat will provide a viable form of transportation across the river unless there is any

evidence to the contrary. Similarly, it is assumed that the boat is the only form of transportation since

there is no evidence of any other form of transportation available. The focus of McCarthy's paper is a

formahization of a particular way in which people jump to conclusions, referred to as predicate

S;ir cumsc, iption. According to McCarthy, predicate circumscription is a rule of conjecture that says

"the objects that can be shown to have a certain property P by reasoning from certain facts A are all

the objects that satisfy P". Thus by circumscribing the modes of transpoitation available, we believe

that the only way to get across the river is by boat. In his paper, McCarthy provides a first order

axiom, called the circumscription axiom, that provides a formal statement of the above intuition. In

NOii then apm, r iuhd you p rh Ifu'a flmr, ,iloni y ona win( IsIfft "0

I "w



3

addition he provides a tor mal semintics of predicate circumscription in to rm of mo d)hel tht ory. which

lhe refers to as minimal entailment. Here we say that a sentence A minimally entails Q wilh respect to

a predicate P provided 0 is true in all models of A that are minimal in P. Finally. McCarthy shows how

predicate circumscription subsumes an earlier form called domain circumscription which says that

"the 'known' entities are all there are".

The notion of circumscription, the relationship between the circumscription axiom and minimal

entailment, and the relationship between predicate circumscription and domain circumscription are

all very difficult concepts to grasp. The primary objective of this paper is to explain these concepts

and discuss circumscription's scope of applicability.

3. Konolige on Belief and Incompleteness

Gods are unfettered by such corporeal limitations as time and space; on the other hand, the rest of

us intelligent agents are unfortunate enough to have to put up with these and other limitations. The

study of logic from the viewpoint of philosophy and mathematics has been better suited for these

omnipotent gods than the intelligent agents explored in Al, in that it has no way of taking into account

the limitations of the physical world. Konolige identifies three types of incompleteness that result

from the physical limitations of intelligent agents: 1) resource limited incompleteness, 2) fundamental

logical incompleteness, and 3) relevance incompleteness. First. resource limited incompleteness

occurs when. an agent has the inferential capabilities to derive some consequence of his beliefs

but simply does not have the computational resources to do so." Second, fundamental logical

incompleteness occurs when an agent has a logically incomplete or inconsistent inference

procedure.2 Third, relevance incompleteness occurs when an agent has available all the necessary

information to deduce the desired consequences, but restricts his set of knowledge in such a way that

the deduction is no longer possible.

The goal of Konolige's work is to provide a formal logical framework for describing the above

limitations. In accomplishing this goal Konolige's formalism differs from traditional logic formalisms in

a number of ways. First, the notion of consequential closure is replaced with that of derivational

closure. In addition, the rules of deduction are not required to be logically complete or sound. Thus

the logic system is not guaranteed to deduce all logical consequences of what is known, but instead

is only guaranteed to deduce all consequences that are derivablu from the set of deduction rules.3

21t is arguable whether or not even gods afe always consistrnt, for example, see [GODS ?1.

" 
3
The restills of demvalional closure may diff#er foin that of consequential clo.ure when the deduction rules arc, logically

inicomiplete or inconscisnl i (

U? A-t
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Second. Konholig, providhes a franiewoik for mo(lingl 1) the ilteidaction.,; of several agent:;, each with .

possibly (ifIferent limitalions, anI 2) the beliefs of agt'nlIs about other ajenlIs (about other agents...

I his is accomplishe(d by allowing eacl agent to be modeleI by a separate logical system (called a

deduction structure), and then to provide a set of operators (the belief operator and the

circumscription operator 4 ) that allow information sharing between agents. An agent is represented

by a deduction structure. consisting of 1) a set of deduction rules and 2) a set of initial beliefs in the

form of sentences. The belief operator applied to an agent (A) and a sentence (P) returns true if A

"believes" P. Thus if A has not deduced the truth of P or A has deduced P to be false, then the belief

operator returns false. This makes it possible for agents to examine the beliefs of other agents or their

own beliefs about other agents. The circumscription operator takes an agent (A), a set of sentences

(L) and a sentence (P), and returns true if A can derive P from L. This makes it possible to make

explicit statements about the derivation process.

Konoliges formalism provides a means of modeling several forms of incompleteness that cannot be

modeled in standard first order system. This should make it possible to precisely define the semantics

of several aspects of conjectural reasoning that have not yet been formalized.

The two major weaknesses of Konolige's paper are that 1) he provides little motivation for many of

the components of his formalism and 2) he provides very few examples of what analytical or ,)

i" computational power is gained by using his formalism. It is thus very difficult to analyze Konotige's

formalism on computational grounds. Instead this paper focuses on the expressive power gained by

Konolige's formalism with respect to rules of conjecture similar to circumscription. See [Levesque

84] for a discussion of an alternative approach for dealing with logical incompleteness.

4. Jumping to Conclusions

Dealing with partial information is an everyday experience. People are frequently required to jump

to conclusions in order to deal with a particular situation. The following are just a few typical

examples.

1. 1 he only people who said they would he going camping are John, Fred and Mary, so I'll
assume the rest are not going.

2. I know my keys are here somewhere since I left them here just an hour ago.

3. fhere can't have been a second 'Great Depression' in 1954; otherwise, the history books
would be sure to have mentioned it.

K.,m iglj' ci fCI( t ill('x lon o jlrea i nS FiO to be corfrit;cI w'diI I i(:II C nII-;t rm Ijili I ni MI (J(aItIy's !;vc1,f e sitce Vhey Iave little or

I%
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S --. 4. I'm suirv snipes fly, they'ie birds aren't they?

5. lie probably got all his degrees from here. alter all he's the presilelt of MIT.

6. Until recently scientists were "sure" that Saturn had exactly three rings.

We see from the above that the assumptions people make take on many forms, several of which

have been investigated in Al under such names as failure by negation [Clark 78], the closed world

assumption IReiter 78], circumscription [McCarthy 80al [McCarthy 77], default reasoning [Reiter 801

and THNOT [Sussman 70]. In the next few sections we embark upon the task of understanding the

meaning behind a number of these techniques and the relationship between them. The discussion

focuses primarily on the semantics of circumscription and its relationship to other techniques. The

notion of circumscription is a powerful one, but one that call be very difficult to grasp. It is clear that

McCarthy was only beginning to understand what circumscription was all about when tie wrote about

it in "Circumscription--A Form of Non- Monotonic Reasoning" [McCarthy 80a]. and there was a gap of

- several years before other researchers understood it well enough to publish further papers on the

topic. It is very difficult from McCarthy's paper to grasp the intuition behind the predicate

circumscription axiom, and then to draw an exact link between this axiom and the missionary and

cannibal problem discussed in the first half of his paper. Thus, before analying the limitations of

circumscription or proposing any extensions to it, it is important to first develop an intuition behind

* circumscription's intended purpose. I begin by providing an informal discussion of the semantics of

predicate circumscription and then show how this semantics is reflected in the circumscription axiom.

A number of special cases are also considered, providing further insight into McCarthy's approach.

In addition, a number of the examples listed above will be used throughout this paper as a means of

comparing circumscription with other forms of conjecture.

Informally, predicate circumscription says that the set of all objects satisfying a certain property P is

the smallest set of objects that is consistent with the known facts A.5 For example, in the missionary

and cannibal problem circumscription can be used to jump to the conclusion that the only available

mode of transportation to cross the river is the boat. In ihis case P is the property "available modes of

transportation to cross the river" and A is the fact "there is a boat available". lhe set {boat) is then
the smallest set of "modes of transportation" that is consistent with the facts. Furthermore, by

circumscribing the "ways that the boat can fail," we deduce that the boat is working correctly. since

5McCarthy describ's; Cir..j ,cr IIl]itIl aS . tlt oh;r',cts tl/at car be shrow? to 17at, ;a certata rioperty P I' re,sr'rc from,7

et,,'rl hcrS 4 are all the oblcts l!,,t .1srItfy P lhis ,ItemI(r t ' does not courvey the colt'd srlmallics of c'itrrll;CrIm ),iOl,. and
inz~tcad idt, l l n l.,t i J l1 Ito Ikiler,r" Clu.t-v'd Wodd A, stiniplio oi t er 711] whic:h .say'; ioughly that IN,~ only ohl(cts that
-have a prop'rl P are lhow hat lo)lictilly follow 1nn taln Idols A 'The difference hrvwrwn cuicunscilplion ,ind the closed

+" "" v ,nfli tlli n i'Lw I tv,v of lhe (lhw,i1y cordA ,isptroi f tilht , as OvPtrh'ld to " tl atc llre (olwl ly hii. The

- -l- t'"n t wo n tho.sf two l : Iq is di. f in dA JlA tin 8,3.
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the smallest sut of ways the boat can fail that is consisten it with A is the empty set.

()l, way of vi )W m m ) ,,s(:icate Circuii._cliition is as a special case of Occain's Razor. Occam's

Razor says roughly that faced with several possible explanations, take the simplest one that is

adequate. If we take "simplest" to mean the smallest and "adequate" to mean logically consistent

with the known facts, then predicate circumscription translates to "The set of all objects satisfying a

certain property P is the simplest one that is adequate." Thus the formal statement of circumscription

(i.e., the circumscription axiom) provides a precise semantics for one interpretation of Occam's

Razor. Having the semantics of these common sense rules of conjecture formalized is essential to

further analysis and is one of circumscription's most important contributions.

5. The Semantics of Circumscription

Our informal definition of circumscription has a number of ambiguities. We say "the set of all

objects satisfying a certain property P is the smallest set of objects that are consistent with the known

facts A"; however, what is mean't by the words "property" and "smallest"? The objective of this

section is to provide a more precise definition of each of these terms and predicate circumscription as

a whole.

The use of phrases like "the set of all objects" suggests that set theory is a convenient formalism for

capturing the semantics of circumscription. A "property" is taken to be a predicate on one or more

individuals. A predicate P can be viewed as a set of elements, called the extension of P, where the

elk,,nents of the extension of an n-place predicate are all n-tuples satisfying the predicate.6 For

example, if the predicate TRANSPORTATION is only true of boat. then the extension of TRANSPORTATION is

the .set {boat} As a second example the natural numbers is represented by an infinite set, NATNUM

{0, 1. 2...).

Given a theory in terms of a set of axioms A, containing one or more instances of the predicate P, it

is not always possible to determine a unique extension for P (i.e., our knowledge about P is

. ccmpcte). For example. given the axiom "TRANS;"OPTArION(canoe) and TRANSPOR rATION(sailboat)",

there is in infinik number of extensions that satisfy the predicate TRANSPORTATION, namely all sets

*"1 that include both canoe and sailboat as elements. We define Ap to be the set of all extensions of P

_-" that ;atisfy the axioms A. Thus in the above example, taking P to be "T.ANSPORATION" and A to be

"IHArislrA rliON(carnoe) and rifANsrfOl ATION(sailboat)" we get. A, , (S I {canoe. sailboat} C SI.

6 lo lI i w .:t wn till 'rl WO .5.;t,IIP ;11i 1 ool pietiah i0 ,lC ( CO pwdc, iWt,, Fd foic l c it I111p1)10 >Srimp~ly aS C, all

11,J11111; i,, irionf liew i~' l % -vot ,ippily to n phc pCr eth~cate5

t C'"V

' ,, ) .. ,., ~ ',',lJ/~ w . l','-t n~ hl 11 ~l tiea , ,li ~n ~ll'e ] drlh:i ,id '~l!,e l , ~- - C im l 3 C;,1
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Next we need to define the notion of "small". An extension is said Io be ;tnltl,,t than ano(her if it is

a proper subset of the second. 7 1Lhus the extension (canoe, sailboat) is smaller than the extension

{canoe, sailboat. windsutfer}. An extension is said to be the "smallest" if it is minimal, that is, if Ihere

is no extension that is a proper subset of it. More precisely, an extension E of a predicate P is said to

, be minimal with respect to a set of axioms A just in case 1) E is an extension of P (i.e., E C A) and 2)

there is no other extension of P that is smaller than E (i.e., -(3(!)((I) C Ap / (1A C E)). Thus in the

above example (where A. - {S I (canoe, sailboat) C S)), the minimal extension is [canoe, sailboat)'

since none of its subsets are members of Ap. It is not necessarily the case, given a set of axioms, that

a predicate has a unique minimal extension. That is, there is not necessarily a unique "smallest" set.

In many cases a predicate will have several minimal extensions, and in some cases there will be none

at all. Examples of both situations are provided below.

At this point we are ready to define predicate circumscription. Given a set of axioms A that only

partially constrain a predicate P. predicate circumscription is a way of restricting the set of extensions

of P to consist of only the minimal extensions of P in A. We call the set of extensions resulting from the

circumscription of P in A the closure of P in A (denoted cIRc(A,P)). CiRc(A,P) is then defined to be the

set of all elements S such that:

1. SCAp and

2. -(3 t.((P E Ap) A (Pi) C S)))

Thus CIRC(A,P), is a precise definition for one interpretation of what it means to jump to the

%" conclusion that "the set of all objects satisfying a certain property P is the smallest set of objects

which are consistent with the known facts A."

Before going on to the predicate circumscription axiom it is useful to consider a couple more

examples of circumscription at the semantic level. The first example is a case where there are several

minimal extensions while in the second example there are no minimal extensions at all. Consider the

statement "someone left either a helicopter or a boat next to the shore", which we translate to the

axiom "TRANSFOFITAION(hlicopter) V T 1ANSPORTATION(boat)". In this case the predicate

TRANSPORTATION has two minimal extensions, namely, {helicopter) and {boat}. Thus by

chicumscribing "modes of transportation" we deduce that "either the only mode of transportation is

the helicopter or the only mode of transportation is the boat". This roughly achieves the effect of an

exclusive OR, since the set (helicopter, boat} is not minimal and thus excluded as a possibility by

circumscription.

sr I ).,t is ci'no 'ic (. prot~i -subset is ]dcnoted C ani crmernt of is detioted .(

,' '.. . .. .. . ... .. ... .. . . - - .
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Figure 5-1: Predicate Circumscription Example: No Minimal Extension

In the above example predicate circumscription does not provide a unique minimal extension for the

predicate. As a second example, consider the axiom A to be "For all integers n, P(n) implies

P(successor(n))". If we define Rn to be the set of all integers greater than or equal to n, then Ap is a

set containing an extension R for every integer n (figure 5-1). If we now arbitrarily select an extension

R from Ap, then the extension R is a proper subset of Rn. Therefore, for every extension in A

there exists another extension in Ap that is smaller, in other words there is no minimal extension of P

in A. As we can see from this example, there are cases where there is no extension of P that satisfies
circumscription; thus it is sometimes the case that circmscribing a theory will make the theory

inconsistent.

6. The Predicate Circumscription Axiom

In the previous section I defined the result of circumscribing a predicate P with respect to a theory A

as the prdicate ciRc(A,P), described extensionally as:

cim-(A,F) {S I S E AI A -E(1.(((I C Ap) A( I C S))))

Where Ap is the set of all extension3 of P that satisfy the axioms A.

To achieve the results of the IRC operator in the proof theory of first order logic, for example, it is

necess.,iry to augment the set of axioms of a theory A in such a way that all the extensions of P in A -.

are minimal. The predicate circumscription axiom is a means of acieving this effect. The goal of this

U% %A J
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section is to show how the circumsCription axiom together with the set of axionis A implies Ihalt P is

equivaleiit to I(;ci (A,P).

For the purpose of this discussion we take the circumscription axiom to be the following second

order sentence schema quantifying over all predicates (Pl.

" Definition The circumscription of P in A is the sentence schema8

V(I).((((I) C Ap) A Vx.(()(x) :D P(x))) D Vx.(P(x) D (1)(x))). (1)

In the above definition the first conjunct in the antecedent, (P C Ap, is a predicate on predicates

which is true exactly when every extension of (1) in A is also an extension of P in A. n Thus the first

conjunct says that for each model of the theory the extension of P is an element of Ap.

The second conjunct of the definition, Vx.((1)(x) :D P(x)), says that P is true of an individual whenever

41) is. Thus, in a particular model of the theory, every element of the extension of ( is also a member

of the extension of P, or equivalently 4) is a subset of P () C P). Similarly the antecedent of the

definition, Vx.(P(x) D (1)(x))), is taken to mean P is more specific (P C d). Making these substitutions

the circumscription axiom becomes:

V(1.(((+ C Ap) A (d) C P)) D ( P C 4)))

Another way of viewing this statement is that, for each model of the theory, any predicate (P) that is

both a member of A and a subset of P must be equivalent to P.

Vt.(((, C Ap) A( 4) C P)) D( P 40))

Or equivalently there exists no predicate D which is an element of Ap and which is a strict subset of

P .
-(34.((0 E Ap) A( D C P))) (2)

This is exactly the second part of the definition of ciric, (where P is taken to be S in the definition).

Next, given the set of axioms A, the first half of the definition trivially follows since the extensions of

P are necessarily a subset of the extensions of P. (Syntactically this is equivalent to replacing all

instances of P in A with itself, producing just A.) Thus for each model of the theory:

P C Ap (3)

Finally, from equations, (2) and (3), and the definition of cric, we deduce that the set of extensions of

-, ", 8 Ailain, the circumscription axiom schenta is easily generali7ed to handle arbilrqy n placi' predicates; by repl, cinql x with an

n-luplh.

irhe m ,i ( Ap is constructed in a fist oder axiom by substituting all instance. of P in A by ,I, (i.e ,I ( A -

l A)-

€,°,
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P, ros;Liltitn from the set of axionis A pi.i; the (ircuimscriptiol axioml, is the set of all minnlal -

exteision!; of P3 in A. [Iis the circulni;ci iption axioi1 (:;aptures the . 111 iritics dos(;rib)ed in the

%- pIfrVIO)LIS C ion.

, 7. Properties of the Circumscription Axiom

Given an axiom that captures the meaning of circumscription, what (1o we do with it? The objective

of this section is to answer this and similar questions. This section begins with a discussion of the

general properties of circumscription and a number of ways it can be used to make deductions. The

(discussion then turns to several ways that circumscription is used in the common sense world.

Finally, circumscription's limitations are discussed, providing motivation for later sections.

One of the most important contributions of circumscription is that it provides a precise statement of

the semantics of an important form of conjectural reasoning. This statement of circumscription is

uSOf il in analyzing both its comlputational properties and its expressive power. In this section we are

primarily interested in circu mscription's expressiveness; its computational properties are examined in

the second half of this paper. Two ways of using circumscription are examined below -- the first

consists of determining the set of all individuals that satisfy a circumscribed predicate, while the

second is a way of determining whether or not a circumscribed predicate is true of a particular

individual.

One of the appealing properties of circumscription is that it works within the framework of first order

logic, whose properties are fairly well understood, rather than creating a new logic that hasn't yet

been characterized. To incorporate circumscription into a first order system, the circumscription

axiom is converted from a second order statement to a first order axiom schema, by removing the

quantilication over (f, and instead viewing (ID as a predicate parameter for which an arbitrary

expression can be substituted.

(((P E Ap) A Vx.(q4(x) D P(x))) D Vx.(P(x) ( tD(x)). (4)

7.1. Determining the Individuals That Satisfy a Predicate

The need for circumscription arises from the need to reason based on incomplete information.

Basically, given an incomplete description of the set of individuals satisfying a particular property,

circumscription is an intuitively satisfying assumption about how to complete this set. What the

circumscription axiom provides us with is a precise way of stating this assumption. Given a predicate

I-' and a set of axioms that we want to circumscribe over, one way the circumscription axiom is

typically u.-ed is to determine the set of all individuals that satisfy the prc(licate. To accomplish this, .

one first con:,;ructs a predicate 41' describing a sot of imdividuals and then u-.Js the circulscription

J- e
A
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* ..: a~. ;.xion to show that (1 is e(liivaliit to 11. (whero P Is the cir(:iinisiribtN1d |uiediclI we're intlrc' ted iii).

ihis, iil tufift. iS aiCCOmIplished by instanltiarll tin l irCi llSCi iiptOn dxiiom schlena (eqtuation 4) with a

specific A. P and (l, and then showing that the, ait icce ei it of the ax ll follws from what is knowin.

Thus the major steps in usinq circumlscription are-.' I) selecting a predicate P to be circumscribed. 2)

,-. - selecting a set of axionis. A, to circumscribe over, 3) qenerating (1., and 4) showing that the

antecedent of the instantiated axiom follows from what we know. For example. consider tihe

circumscription of P in A, where P is tile predicate "HIANSt'OIAIION" and A is the sentence

M"I)ANI'OI rAIION(canoe) A MFlANSPOFUAHfON(sailboat)". We then guess canoe and] sailboat to be the

only modes of transportation and instantiate the circumscription axiom schema with 1(x) being the

expression "(x canoe) V (x - sailboat)":

((((canoe = canoe) V (canoe = sailboat)) A ((sailboat = canoe) V (sailboat = sailboat))) (5)
A Vx.(((x = canoe) V (x sailboat)) - IRANSPOfAII0,N(X)))

D VX.(TIlANSPOHtATION(X) ((X = canoe) V (x = sailboat))).

* The first part of the antecedent in (5) is tautologically true while the second follows from A; thus,

• from the consequent of (5), tile minimal set of transportation modes is (canoe, sailboat). In this

V example, the circumscribed predicate is described by a unique minimal extension and thus is

completely determined.

If a predicate P has several minimal extensions, then the result of circumscribing P may still provide

useful information. For example, suppose that TRANSPORTATION is being circumscribed in the

sentence "(TRANSPORTATION(canoe) A TRANSPORIATION(sailboat)) V (TRANSPORTATION(canoe) A

* TRANsPOnrATION(kayak))" using the above technique we can show that:

Vx.(rnANSPORTAFION(x) = ((X = canoe) V (x = sailboat))) (6)
* J.r V VX.(TFlANSPonrATION(X) - ((X = canoe) V (x = kayak)))

Thus I PANSPORTAl ION has two minimal extensions, (canoe, sailboat) and (canoe, kayak). From this

, we can deduce several things; for example, in either case there are only two modes of transportation

* available, one being a canoe and both being water vehicles. Using McCarthy's terminology, we say

that equation (6) minimally entails each of these facts with respect to TRANSPORTAI ION, since each fact

holds in all minimal extensions of ]-ANSPORTATION. This differs from regular entailment, since a fact

may be true in all models A where P is minimal, and yet not be true in all models of A. For example,

there are exactly two modes of transportation in all minimal extensions of IRAN.SPORTATION in (6);

however, there are extensions of TRANSPORTATION in (6) where there are more than two modes of

transportation. The topic of minimal entailment arises again later in this paper during the discussion

of non-monotonic reasonrng (section 11).

Also consider the case where P has no minimal extensions in A (an example of this was provided at

-I., I
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[-., the ulld of section 4). If we LlSe the second order statement of the cirCiiiSCri)iOII aXiOil (equation "

S()) then there is no extension of P (and therefore no model) such that A and equatIon (1) both hold.

Thus A taken together with the circumscription axioni applied to P is mooi;ts'telt! Fortunately the

effect this has on the first orct!r circumscription axiom schema is that theme will be no instantiation of

(1) with P such that the consequent of the circumscription axiom can be deduced. Thus at worst the

circumscription axiom will provide no useful information.

7.2. Determining the Truth of a Predicate for a Single Individual

The above discussion described how the circumscription axiom is use( to determine all the minimal

extensions of a predicate P. This is similar to the way circumscription is used in McCarthy's paper. As

is discussed in later sections, finding an instantiation for (1) that enumerates all minimal extension of P

can be computationally quite expensive. Searching through all possible instantiations of the

predicate (1) is equivalent to searching through the space of all possible formulas. This section

proposes a second technique, not discussed in the literature, that uses the circumscription axiom to

determine if P is true or false of a particular individual, a, in all minimal extensions of P, while avoiding

the computational cost of the technique described above.

An obvious way of accomplishing the above task is to find all minimal extensions of P and then test

-[ lie truth of P(a) in each extension. This approach is undesirable since it essentially involves

determining the truth of P for every individual in the domain. A much more desirable way of

determining the truth of P(a) is to find an instantiation of '1 that only constrains the truth of (b applied

to a, while leaving the truth of (1) applied to all other individuals to be the same as that of P. This avoids

the work of unnecessarily determining the truth of P for all other individuals in the domain. For

example, P(a) can be shown to be false in all minimal extensions of P in A by instantiating 4)(x) as "(x

f- a) A P(x)" in the circumscription axiom (4), and then showing the antecedent of the axiom to be

" true. Performing this substitution, the circumscription axiom schema simplifies greatly, becoming:

(((x # a) A P(x)) E Ap) D "P(a). (7)

Consider the previous example where P is TRANSPORTATION and A is "(TRANSPORTATION(canoe) A

i[ ;n,. I Al ION(sailboat)) V (IRANSPOR rATION(canoe) A TRANSPORTATION(kayak))". Circumiscribing

P in A we might want to show that there are no helicopters available (i.e.,

--- ,THANSPORTA Il01(h elicopter)). Using (7), and instantiating the individual, a, as helicopter:

(((canoe ;eI helicopter) A TRANSPORTAION(canoe)
A (sailboat ;,I helicopter) A IRANSPORTAIlON(ailboat))

V ((canoe :- helicopter) A iRANSPORTATION (canoe)
U A (kayak t helicopter) A IPANSPORTArnON(sailboat)))

1w \rsi 1IoAtIiON(helicorpter).

.1*.
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In the above equation, all of the inequalities are tm an d the antecodet t siltplifies in A. thoefnre,

I I IANI' )ti I A I ION(helicopter) follows. We have thus determned the truth of

IF1AN: il'OI1AIION(helicopter), while avoiding the expense of finding a "full irt,;tantiation" of (1) is wats

performed in the first technique.

The above example demonstrates a way of showing that P(a) is false in all minimal extensions of P in

A. The second case involves showing that P(a) is true in the same situation. To deal with this case.

note that if a is a member of a minimal set describing P then it will also be a member of all supersets of

P. Furthermore, each extension of P is a superset of some minimal extension of P. Thus if P(a) is true

in all minimal extensions of P then it is also true in all extensions of F). Therefore, A minimally entails

P(a) with respect to P if A entails P(a). In other words. nothing is gained from circumscription in trying

to prove the truth of P(a)). and the circumscription axiom reduces to P(a) D P(a).

7.3. Applying Circumscription and Other Forms of Conjecture

When using circumscription, one must select both a predicate and a set of axioms to be

circumscribed over. The set of axioms selected depends on properties of both the domain and the

intelligent agents being modeled. If the intelligent agent is omnipotent, then it will use all the available

information, and thus circumscribe over everything that is known.10 On the other hand. if the agent is

resource limited, then a subset of the known facts are selected that are assumed to be relevant to the

problem.

The problem of selecting a predicate, however, plagues both resource limited and omnipotent

agents alike. In the examples that have been considered thus far, the choice of a predicate to be

circumscribed has been obvious. There are, however, many cases in which the choice is not so

obvious. Consider the following blocks world example, where the domain consists of the 6 blocks a

through f, the predicates BLACK and WHITE, and the knowledge that every block is BLACK or WHITE (i.e.,

VX.(RLACK(X) = "W-IITE(X))). In addition it is given that blocks a and b are BLACK, while c and d are

WHITE. If we wanted to determine what blocks were BLACK we could use circumscription to deduce

that the set of all BLACK blocks is {a,b). It then follows that the remaining] blocks [c,de,f} are WHITE.

On the other hand, by circumscribing the predicate WHIE it follows that {cd} are witIcu, while

{a,b,e,f} are BLACK.

We see from this example that circumscription can inadvertently produce a number of undesirable

side effects. These side effects carn become quite subtle in complex systems. One ramification of this

is that one must be careful in determining whether to circumscribe a predicate or its negation. It is

K O Thi3 appealis to he an implicit a'.;,umplion in McC,r ihy' _,paper, bas;'d on the exampf,; h, pi ovides.
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Inpor tani that one makes a conscious decisioI ;atOlOt which of the two i; hei( circuinsci ihed. A ""9;'~ -*. "

second Iiliicatioii is that the iesult of iultiple circuinscriptions is order senlitive. lits is t serlOtis

logJical prohlern; the ordering of pred icates to hW ,tci;ir,-;cribe.d is a result of tIhe lineailty of syntax

A ridnd has little senimitic significance. The fact that successive circuinrsctiptions are not "associative"

*means that one must make arbitrary decisions about the order of the circumscribed predicates.

To deal with these issues one mlust consider the properties of the problem domain to which

circumscription is being applied. We now consider a number of ways that circumscription and similar

forms of conjectural reasoning have been used, including in database systems, common sense

reasoning and computer -aided instruction. The relationship between circumscription and several

other rules of conjecture discussed below is the topic of later sections. Ii addition, a solution to the

problem of circumscription's ordering sensitivity is discussed in section 8.2.

. A number of rules of conjecture, such as failure by negation [Clark 781 and the closed world

* a:;,iiumption [Reiter 781, arose out of work on database systems. One of the major issues in dealing

with large databases is the negative information problem. In general the amount of negative

information is often much too large to represent explicitly in the database. [Naqvi 85] For example, in

"' an airline flight reservation system it would be much too unwieldy to represent all the places that an

airline cannot fly to, as well as the places it can. Such a data base, which represents both positive

and negative information explicitly, is referred to as an open database. On the other hand, in a closed

database only positive information is represented explicitly, while the truth of negative facts is

deduced by default. More specifically, any fact that doesn't logically follow from the set of facts in the

database is false. I hus, in the above example, there is no flight route between two cities unless one

can he deduced. Negation by failure and the closed world assumption are both techniques for

. making this type of deduction. A closed database is a convention of communication that makes it

.. possible to represent information concisely. This convention appears in many areas, such as the

representation of circuit connections with a schematic or routes with a road map.11

As discussed above, circumscription plays a very similar role in the area of common sense

reasoning. For example, if I'm asked who is going camping, and I respond that John, Fred and Mary

are. thon it is assumed by convention that they are the only people that are goinq. If this isn't the case

then I would qualify my answer with something like "to the best of my knowledge" or "the people I

know".

O(li Il-) I1i.11 1!, l1)-,1 vlh .,Ih1 oilv, 1itioll is thult ii. no hongoP pos-ih , to Iw lr':wnt a p ce of knowlcdij heinq

mink'tov. n1 .;ilct ,rrinihinq lht canno ti e IS 1! ,ull to bu- tal', I ht-; theo I iI ) c sentalion of negative

fiacs p ri s l i0ii knnwihridoe Ihlot Ie di irl. ii being Iepl.;lilt'I
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An important difference btlween the use of th ese techniques in foriliml database systeims versus

connon sense domains is the certainty with which a negative fact is held. In a formal database

application, closure is all explicitly stated convention that is held with great certainty. [hus in these

applications it is very important that the integrity of the database is atsure(d On tile other hand, in a

- -. common sense domain the negative information is taken only as the most likely answer given what is

known thus far. For example, it was assumed until recently that Saturn had only three rings.

Furthermore, this fact often appeared in school texts without any qualification. Thus the discoveries
of the Voyager missions required a major revision of the public's beliefs. This type of conjectural

' '/' reasoning occurs over and over again in science. Someone comes up with a hypothesis that is either

refuted or becomes stronger and stronger as the evidence collects. In computer science, the class of

NP-complete problems is an explicit attempt to accumulate evidence to support a belief that "P does

not equal NP".

The problem of measuring the certainty to which we hold a belief, is an interesting and difficult

problem. In problems of scientific investigation this certainty might be derived empirically. In other

more common sense domains our certainty might be based on other factors, such as our model of the

person we are communicating with. One approach, investigated by Collins and his colleagues

,t [Collins 75] is based on the importance of a particular fact. For example, given a question like "were

any U.S. Presidents women?", their system would reason that 1) it knows of no women presidents,

and 2) the fact is sufficiently important that the system would have heard of it if it was true, thus the

answer must be false. On the other hand, given a question like "was it a good year for raspberry

picking in Oakland County, Michigan?", the system would probably fail to answer on the basis of lack

of information (since the fact isn't important enough that the system would have any reason for

knowing it). Of course this research opens as many questions as it answers. For example, how does

one determine whether or not a fact is important? Do people place different levels of importance on

' facts? What is our confidence in a person telling us the relevant information for a problem? Many of

these questions are intimately wrapped up in our model of belief. Several attempts have been made

to formalize the notion of "belief" [Doyle 80], [Weyhrauch 80], including Konolige's article "Belief and

Incompleteness" [Konolige 84] discussed later in this paper.

Above I have discussed several uses of both circumscription and conjectural reasoning in general.

During this discussicn a number of issues were raised that are as yet unsolved in the current

research. In addition, many of the above examples involving other forms of conjectural reasoning

cannot be performed using circumscription as it stands. Several of these limitations aie dis3cussed in

1. Vthe next three sections, along with proposals for extending circumscription. The first section

discusses adding to circumscription the ability to focus in on particular pt)rlions of the domain to be

.-
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ciicLI iscried I le seCOnld 1 liks about how to incorporate defatulls into cir(dillliscription, and the

third diiscus-'s circumliscribilg over things olher than predicates.

8. Relevance: Tuning the Scope of Predicate Circumscription

Roughly speaking, the predicate circumscription axiom provides a means of stating in first order

logic that the set of individuals in the domain that have a particular property is the smallest set that is

consistent with what is known. In some cases we would like to jump to certain conclusions about a

property without having it apply to all individuals in the domain. For example, we might want to say

that the only birds that don't fly are those that are known, without making any commitment about

flying mammals or fish. On the other hand, often we would like to expand the scope of

cir:umscription so that it applies to several properties at once. Thus we need a way of specifying the

set of relevnt individuals and properties that circumscription is being applied to. This is the topic of

the first two parts of this section. If we expand the scope of circumscription to encompass all

predicates and individuals in the theory we have something similar (but not equivalent) to the closed

world assumption. A comparison between circumscription and the closed world assumption is the

topic of the third part of this section.

8.1. Moving In - Focusing on the Relevant Individuals

In the above example we want to circumscribe the predicate FLIGHTLESS over the set of individuals

that are birds, without making commitments about any other type of individual. A straight forward

application of the circumscription axiom, however, results in circumscribing over all individuals in the

domain, clearly not what we desire. Instead we would like to specify a subset of the domain and

circumscribe over it, while leaving the rest of the domain untouched. The subset of the domain we're

interested in can be represented as a characteristic function C(x), which is simply a predicate on the

individuals of interest. Thus C(x) can be viewed as a subset of the individuals in the domain, just like

any other predicate.

To circumscribe a predicate P in A over only the individuals in C, we need to remove the individuals

,i1 P we are not interested in and then minimize over the resulting set. To accomplish this we intersect

both P and (I with C, to remove the undesirables, and then use the definition of minimal, giving us:

(JiC((h c Ai,) A ((I r C) c (P fn C))) (8)

The corrpsnnding second order axiom is then:

V4, ((('1 C A,) A V-K.((,I,(x) A C(x)) - (P(x) A C(x))))
i) Vx. ((P(x) A C(x)) (,I,(x) A C(x)))).

which sil)llies to:

e--*-.---Fz .r .Z,. -L n'. ... ...- --- ..- .../:'. -- .:." .:. -" -.-- ." . --" .".'- ---. . -"-". .'. .".'



V('l.(((l1) C A1,) A Vx.((tl(x) A C(x)) D P(x))) D Vx.(([P(x) A 0(x)) D (1I(x))).()

Thus in the bird example, we can say "the only birds that are flightless are the ones we know about"

by letting P be It icI i si SS and C be i iuiii. If, for example, we knew oi ily that "a penguin is a flightless

bird," (A - (BI.n(penguin) A F LIGI iI L I ss(penguin))) then by instantiating (1) in axiom (9) as:
(-(x) _ (Erio(x) A (x = penguin)) V ('mr)(x) A i-i i(;iin [ ;s-(x))

tl) CAp is a tautology, and thus it follows that:

Vx.((oit)(x) A FLIGI r SS(X)) D (x = penguin))

In addition we can use axiom (9) to test whether or not a particular bird is flightless using the

techn ique developed earlier for predicate circumnscription.

Next consider the limiting cases for the characteristic function C(x). If we take C to be the complete

domain of individuals (i.e., Vx.C(x)), then axiom (9) becomes logically equivalent to the predicate

circumscription axiom, just as we would expect. At the other extreme if we take C to be a single

individual, a, (i.e., C(x) - (x = a)) then axiom (9) becomes:

Vfr.((((D C Ap) A (4)(a) D P(a))) D (P(a) D l)(a)))

which says "assume that P(a) is false as long as it is consistent with A". This is equivalent to the

negation by failure inference rule, which states that P... -' p can be inferred if every possible proof

i- of P fails." [Clark 781 Thus far we have described how to circumscribe over any subset of the

individuals in the domain. The next section describes how to circumscribe over any subset of the

predicates in the domain.

8.2. Moving Out - Focusing on the Relevant Properties

An obvious way of applying circumscription to multiple predicates is to instantiate the

circumscription axiom sequentially on each predicate. For example, to circumscribe predicates P

and Q over a set of axioms A, one would first instantiate equation (4) with P and A, and then

circumscribe 0 over the resulting set of axioms. However, recall from the blocks world example

above that circumscription is order sensitive; circumscribing WHITE and then DLACK produces a

different result than circumscribing the predicates in the opposite order. In practice, when a person

decides to circumscribe their knowledge of the world for a particular problem, the circumscription is

applied over a set of properties. This is an important point: it is a set, not a sequence that we are

.-. ' circumscribing over. Thus the ordering of these properties has no semantic import and should be

irrelevant to the circumscription. Instead the circumscription axiom must be augmented .i,) that

several circumscriptions occur simultaneously, avoiding the problem of ordering sensitivity.

McCarthy suggests a generalization of the predicate circumscription axiom that does this. For the

A . - ,,' ,- - - -



( '" u where two pi t l-cates, P and 0. are bonmy Iointly circuinscribed, the axiom becomeS:

((01),'I, (. A I .Q) A Vx (4 1(x) 7) P(x)) A Vx.('I'(x) l) 0(x))) (10)
DJ (Vx.(1P(x) ,l,(x)) A Vx.(0(x) --- 'l'(x))).

Viewing A , Q as a set of pairs ol extun. ions for P and 0 iespectively, then:
,'.'- .' m~(3<(P,,I'>.(< AL'I> ( Ai,( A (01),'I'> t <P,Q>) Ak (4) C P) A ('IP C Q)))(I)

Thus equation (10) naturally extends the notion of minimality to encompass two predicates.12

Generalizing to any number of predicates, the axiom states that, for each model of the theory, thee

"1- exists no tuple ('lrIl. . .) in All(. which is distinct from (PQ .. and whose elements are

:;ubsets of the respctive elements in <PO .. >. 13

Returning to the circumscription of the two predicates P and Q, if P and Q are independent in A, 14

then the result of circumscribing P and 0 simultaneously is equivalent to that of circumscribing P and

* 0 separately (in either order). In the blocks world example of the previous section, if we remove the

constraint that "every block is BLACK or wiiirE," it then follows from circumscribing BLACK and WHITE

together that {ab} are BLACK, {c,d) are WHITE, and {e,f) are neither. This is equivalent to

circumscribing WHIE alone, followed by BtACK (and vice-versa). On the other hand, including the

constraint between BI ACK and WHI rE, the result of circumscribing the predicates together is:

<BLACK, WHITE> _ <{ab,{c,d,e,f}> V <{a,b,e},{c,d,f}>

V <{a,b,ej},{c,d)> V <{a,b.f),{c,d,e)>

This result includes both the results of circumscribing BLACK followed by WHITE and WHITE followed

by B3LACK as subsets as well as results not found in either.

- The technique described in this section allows us to expand the scope of circumscription to include

several predicates in the domain at once. Similarly, the technique of the previous section provides a

means of focusing on any subset of the individuals in the domain. Thus taken together, these two

techniques provide a powerful tool for selecting the relevant slice of the domain to be circumscribed.

These are only two of the ways that the predicate circumscription axiom can be constrained. Other

* i-. ways of constraining predicate circumscription are explored in later sections. In the previous section

.. '.v considered the limiting case where a predicate is circumscribed over a single individual. The next

,cutien considers the other limiting case where the whole domain is circumscribed.

c'' tivIIll thii minminality comliton for a single predicate P is equivalent to:

, -.. ,(1+ ((I Ap) /\ (,I, C P) A (4w, t- P)))

13A :.condtI way of viewing the ('ic uniscipfiOn of P and () in A is that the set of terms tnoh. f P Of Q that te true in A. fs

:'".V- hwi' ';, I' , I Q arn indeipcwlen in A if A A x A i j.q> i If) Ap,) A ( I A )

P.Q p 0

m7- "c-
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8.3. The Limiting Case: Predicate Circumscription and tile Closed World Assumption

fly extending circumscription to close over all piudicates in A, we capture the intulion o0 the

conjecture that "the set of things we believe to be true is the mininal set that is consistent with what

we know" (where. in this case a "thing" is taken to be a term). This is very sirilar to Reiter's closed

world assumption (CWA) [Reiter 78], which roughly states that "we only believe those things to be

true that follow from what we know". Although these statements might appear the same at first

glance, they have a subtle, but important, difference. This difference arises from the use of the

phrases "consistent with" in circumscription, versus "follows from" in the CWA, and is best seen

through an example. Consider once again the missionary and cannibals problem where we are told

that either a boat or a helicopter is available. In this example the result of circumscribing

I AI J,POn I AI ION was two minimal extensions, (helicopter) and (boat). Next consider the application

of the CWA to the same example. It doesn't logically follow from the statement

"TRANSPoHrA rION(helicopter) V TRANSt'RrATION(boat)" that helicopter is an available mode of

transportation; neither does this follow for a boat. Thus, the result of applying the CWA is that there

are no available modes of transportation to cross the river, but this is clearly inconsistent with the

original statement that either a helicopter or a boat is available!

Let's examine this inconsistency more carefully for a moment. Another way of stating the CWA is

that a literal 15 is assumed to be false as long as the assumption is consistent (i.e., it doesn't folfow that

the literal is true). Thus the CWA checks to make sure that each assumption taken separately is

V. , consistent with the original data base It does not, however, check to make sure that the assumptions

are mutually consistent, thus inconsistencies are allowed to slip by. Circumscription differs in that it

makes precisely this check by assuring that the predicates extensions be both minimal and

consistent.

Reiter recognizes this inconsistency, and avoids it by restricting the applicability of the CWA to horn

databases. A horn database consists of a set of clauses, each of which has at most one positive

literal. Each clause can be viewed as an implication where the consequent consists of the positive

literal and the antecedent consists of all the negative literals. For example, the following set of

11 0, clauses are horn:
(-SNIPF(x) V BIRD(x))
A(- ENGUIN(X) V IflD(x))

V: and are equivalent to:

Vx.((s IIH (x) V PF'I(ruIN(x)) D ElIRD(x))

-
,,,A pofitivt h1iCal is a t'omi (,i pwdiCrall, 'l)Iw I to a tiple of inividual!',), while a nteJtAv(l h1ial isa '1 n p, xIt(u(I le

I .%
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A way of applying the CWA. or closing off the fdatabase" for a 1ItC1 1l [P(x) is sugge.%ted by

Claik ICkuk 781, which consists of 1) (olleting all tll( (:laisI.!s whose 'on:;(.,qllents contain P(x), 2)

cmverting the clause to thie form: Vx.(A(x) D) P(x)), and tlhen 3) inverling the implication and

combining with the original clause to get Vx (A(x) -- _ P(x)). -11hs is equivalent to saying that the

sufficient conditions for the positive literal to be true are also the necessary ones.

Given the above restrictions, Reiter claims in [Ruiter 821 that Clark's completion axiom, just

described. is implied by predicate circumscription. In his paper, Reiter provides an example where

this is the case. an( states this implication as a theorem; however, he neglects to provide any proof of

tuie theorem. Furthermore, this proof does not seem to appear in any of his other published works.

Reiter then iimrplies at the end of the paper that, as a result of this theorem, predicate completion can

be used to generate an instantiation of (1)(x) that is equivalent to (Iumc(A,F'). If true. this would be an

important result since it would remove the guess work involved in finding the minimal predicate.

However, this interpretation appears to false. Consider the following example, consisting of the

domain of integei s and the single axiom: 16

Vn.((n =0 V P(n- 1)) D P(n)) (12)

-5 -4 -3 -2 -I 0 I 3 4 5

<-' {_} _ -

0 0-- 0 0 0 -- 0 0

Figu re 8- 1: Upwardly Closed Rays That Include Zero

SomiWtically thi-s axiom describes the set of all P's, each of which is Upwardly closed and includes

-'ou (figure 8 1) 1 his axiormi is in the desired form. Vx.A(x) D P(x), prescribed hy Clark for predicate

co ;4l, linn. thus we infer that:

Vn (P(n) D (n =- 0 V P(n - 1))) (13)

1 h. 1xuIIJ1 If'. I s l et IIt t(, II(h' ol',lnllmi o f t ie followilnq tvo hoirn clail;,s

V11J, F 0I ) I- l 10))

V n (I (n 1) f '(11))
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-5 -4 -3 -2 1 0 1 2 . 4

_ _- -4

* 4--o0- -0 -

0- _

Figure 8-2: Rays That are Downwardly Closed Except at Zero

This is equivalent to a set of P's, each of which is downwardly closed except at n = 0 (figure 8-2). As

a result of predicate completion the conditions of (13) are combined with (12), providing two

extensions for P, the first containing exactly the natural numbers and the second containing the

integers (figure 8-3). The first case is a minimal extension of P, and is the same as the result of

applying circumscription. The second case, however, is clearly not minimal, since the integers is a

strict superset of the natural numbers. Thus using predicate completion to perform the closed world

assumption does not necessarily result in constraining P's extensions to be minimal. In other words,

the results of predicate circumscription and the closed world assumption are not equivalent.

This example provides a counter example to Reiter's interpretation of the theorem, that is, that

predicate completion can be used to find an instantiation of the predicate that is minimal for horn

databases. What Reiter's theorem is saying is something much weaker. That is, for horn databases,

the predicate resulting from prcdicate completion is true in all cases that the circumscribed predicate

is true. Thus predicate completion is not over restrictive with respect to circumscription. This is a

useful result since it tells us that, like circumscription, the CWA will not result in an inconsistency

*- when applied to horn data bases (earlier we discussed how in the more general case the CWA can

- . " produce inconsistencies). However, the theorem says nothing about predicate completion being

. .. 2t-
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under rus tictive, that is, how close the predicate iesultIng from predicate completion is to being -_.

ii nirnal. II fact. what tile above (!xaIIlpti shows is that in some cases the.] resulls of prelicate

cOml)l'tion can hie lar from miniinal! luis it is not clear what nlefit we have gained in Lsing tlhe

CWA over leaviny the pi ed1cate cofpletely alone. Ccrtainly Ihe micircinscribed (or uncompleted)

predicate would also be guaranteed not to be over restrictive. Intuitively (and in practice) the CWA

appears to be quite useful as a circu~mnscriptive device. However. it remains to be shown exactly how

restrictive the CWA really is.

-5 -4 -3 -2 -1 0 I 2 3 4 5

Figure 8-3: Combination of the Upwardly and Downwardly Closed Rays

Another problem with the CWA is that, like circumscription, it is ambiguous whether or not a

predicate or its negation should be assumed. Recall that the CWA says that a positive literal is

assumed to be false unless it logically follows that it is true. On the other hand, the fact that we need

to make an assumption implies that it does not logically follow that the literal is false. Therefore, it is

logically consistent to assume either that the literal is false or true. The CWA always assumes that the

truth of a positive literal is false unless it follows that it is true. The default assumption for the truth of

a literal, thus, is built implicitly into how the literal is expressed. For example, when talking about

birds and flight we might select the predicate FLIF.S and list birds that can fly or select the predicate

FLIGHTLESS and list those birds that can't. The selection of the particular predicate can have a

dramatic affect. For example, by selecting FLIES it is assumed that the only birds that can fly are those

that are mentioned, while selecting FLIGHTLESS assumes that the ones mentioned are the only ones

that can't fly. These types of decision are particularly important during conjectural reasoning, since

statements like "penguin's can't fly" can suddenly become the norm, rather than the exception. One

of the motivations for default reasoning is to make these assumptions explicit in the axioms. The next

section discusses a way of incorporating defaults into circumscription.

9. Circumscription and Default Reasoning

The types of conjectural ieasonilig examined thus far say something roughly like "the objects that

can be shown to have a certain property P by reasoning from certain facts A are all the objects that

satisfy H". on the other hand, the notion of a default. P, is something like "the objects that can be

4
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shown not to have a certain property P by reasoning from certaili facts A are the only exceptions"

I hus a default is a property that is true of a class of individuals. Delault reasoning is prevalent in

.,,., many domains. such as knowledge representation, lemporal reasoning, trouhleshooiig, qualitative

reasoning and so forth. In knowledge representation we use defa Llls to say somwthing like "birds

usually can fly" and "elephants usually are gray, have four legs and a trunk." In temporal reasoning

defaults are embodied in the persistence assumption, "things don't change without a cause". To

perform default reasoning, one must provide a way of 1) stating a default property for a class of

individuals and 2) determine whether or not a particular individual satisfies a default. This section

builds on the results of previous sections to incorporate default reasoning into circumscription.

The notion of a default is analogous to circumscription. The difference is that default reasoning

tries to maximize the number of objects having a particular property, while circumscription tries to

minimize it. Thus default reasoning can be restated as the set of all objects satisfying a certain

property P is the largest set of objects that are consistent with the known facts A. That is, default

reasoning is a way of restricting the set of extensions of P to consist of only the inaximal extensions of

P in A. An axiom for default reasoning, analogous to the predicate circumscription axiom is:

V(t).((((l1 C AP,) A Vx.(P(x) D (1)(x))) D Vx.(P(x) =-=1)(x))). (14)

Or, semantically, there exists no predicate (I) which is an element of Ap and which is a strict superset

of P:

-(3.((( C A) A (P C (P))) (15)

The similarity, between the above default axiom and the predicate circumscription axiom allows us

to take advantage of the techniques developed for circumscription in preceding sections. The default

axiom, as it is stated above, however, is not yet adequate. Normally, a default is expressed about the

property of a paiticular class of individuals in the domain, such as the default value of a slot for a

particular frame [Bobrow 77], or the role filler of a concept [Brachman 85a]. Thus we must be able to

restrict the application of a default to only those individuals that are subsumed by a particular

concept. Using the results of section 8.1 the default axiom schema is restated as:

Vt.(((1 C A,) A Vx.((P(x) A C(x)) D (f)(x))) D Vx.(((I)(x) A C(x)) D P(x))). (16)

Thus to state the default that "all birds fly" we specialize the above axiom schema with P as FLIES

and C as [31RD:
Vl.((1 C A, ,) / VX.((F II-s(x) A BIRD(X)) D (1>(x)) (17)
D Vx.((,l,(x) A niim(x)) D rt 1:'5(x))).

.

I -= A nice property of the default axiom is that it allows us to specify different defaults for different

classes of individuals, thus we night say that birds fly by default while humans don't. Furthermore, if

we state that a set of properties are mutually exclusive and collectively exhaMustive, then a default can

I%
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specily oi eof several slot fillers. For example we might want to say that all animals either swim, walk

or fly, and theri specify the defaults of each class of animals to be one of the three.

Next we need a way of determining if an individual, a, satisfies a default property, P. To do this we

partially instantiate P with a, as described in section 7.2, except that we take (l)(x) to be ((x = a) V

P(x)). rhis produces the following axiom schema:

(((x = a) V P(x)) C A1,) A C(a)) D P(a) (18)

Thus for the above example this schema becomes:

((((x = a) V t Lir-S(x)) C A I, .) A 11110(a)) D FLIES(a)

Thus to determine whether an individual, a, satisfies a particular property P, we partially instantiate

P with a in any schema for which 1) the class, C, subsumes a, and 2) the default is the property P.

For example, to determine that a snipe flies, given that "a penguin is a bird that cannot fly", we

instantiate the above schema with a snipe, and A =- (BIRD(penguin) A "FLIES(penguin)):

(BIRD(penguin) A -((penguin snipe) V FLI[s(penguin))) A BIRD(snipe))
D -LiEs(snipe)

The first conjunct of the antecedent follows from what is known, thus, if a snipe is a bird then it can

fly.

This completes the description of how to specify and use defaults. The last few sections have

provided a number of extensions that greatly expand the scope of minimal reasoning to encompass

several other forms of conjectural reasoning . In this section we have seen a number of these

extensions come together in an analogous form of maximal reasoning, thus providing a precise

semantics for default reasoning. Before continuing to another topic, it is worthwhile to consider for a

moment the appropriateness of applying default and other conjectural techniques.

9.1. Should Defaults be the Default?

Although default reasoning and other rules of conjecture are essential components of the reasoning

process. it is important that one does not become overzealous with their application. Default

reasoning has been used liberally in a number of Al applications involving areas like knowledge

represen tatiorn, temporal reasoning and search.

In svteal applications there has been a tendency to perform blanket applications of defaults. For

example, in the fiiel of knowledge representation, 13rachmnan [Brachnian 85b] points out that if we

remove the definitional import of a taxonomy and instead interpret all properties to be default

prope tifl IIh,-l it is no tomljer clear what the moai n uinj of ;ubsurLinption i:5 Our intuitions say tMat it

[4
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one concep)t is subsumed by another, then the subsumer places a set of fnecessary prop'rlo"; on the

subsunmee. Yet if we allow any property to be defaulted indiscriminantly, then this i uC(c;sary

condition no longer follows. In this case it is no longer clear what the semantics of a taxonomy is, and

thus the integrity of the representation collapses.

In the area of temporal reasoning there has been a tendency to assume everywhere that the value of

a quantity (position of a block, and so forth) doesn't change unless there is evidence to Ihe contrary.

The application of this assumption often seems to produce the right result and thus has appered

adequate. A serious problem, however, arises when one of these assumptions resultU in an

inconsistency. If every fact in the system is an assumption, then any piece of knowledge relating to

the inconsistency is suspect! Thus the system is presented with a vast number of alternatives to

consider. Instead, by constructing more robust temporal representations it is often possible to

deduce with complete confidence the duration of some event, while avoiding the cost of making (and

possibly later retracting) any assumptions.

The point here is not that one should not use defaults or other rules of conjecture, since they play

an essential role in many areas of reasoning. Instead it is a caution that one should be judicious

about their use.

10. Other Forms of Circumscription

Predicate circumscription places a minimality condition on the set of individuals that have some

property. It is useful to consider other places where a similar condition of minimality might be

desirable. This section briefly discusses two such areas: 1) domains and 2) individuals. A third form

of circumscription referred to as axiom circumscription is discussed in section 13.3.

In general the minimality condition used in circumscription consists of two parts. The first part is a
test for membership in the set of things that are being minimized over, while the second provides a

- 2. . condition, based on an ordering relation for the st, that determines the elements of the set that are

minimal. In predicate circumscription the test is logical consistency, the elements are exten.sions of

predicates, and the ordering relation is subset. There are, however, several other ways in which one

rimght want to use minimality. In each of the following cases the elements of the set we are trying to

".-:J minimize, denoted AOK. are sets and the ordering relation is proper subset. The minimality condition

for an element S is then summarized as follows:

1. S C AOK and

2. .(Il).((I€ E AOK) A (( C S)))

.U
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10.1. Domain Circumscription

Farlier we sa I that the notion that pi edicate circ inscription (;,lpLiIes if; that a closedI predicate is

title of the sinalest :;tt of individuals which is consistent with what is known. Domain circumscription

says that the set of all individuals in the world is the smallest set that is consistent with what is known.

Thus predicate circumscription minimizes the set of individuals that have some property. while

domain circumscription minimizes the set of all individuals in the domain. For example, consider the

statement "Peter, Ramesh and Gerry are in the room." Applying predicate circumscription to the

predicate "in the room", we infer that these are the only people in the room. On the other hand, from

(omain circumscription, we infer that these three people are the only individuals there are.

Domain circumscription is pi marily useful in reasoning about universally quantified hypothetical

statements (or their equivalents) based on experience. For example, I might use domain

circumscription to say that, "it is my experience that all cats are friendly." and then use this fact to

7deduce that it is safe to pet a particular large black and yellow striped cat. (Note that this form of

reasoning is non-monotonic.) After a close encounter with the tiger, we will no doubt believe that the

statement "all cats are friendly" is false, and our beliefs about cats will have changed non-

monotonically.

To define the precise semantics of domain circumscription we let AD be the set of all possible

domains that are consistent with what is known, and let ALL represent the minimal domain. The

semantics of domain circumscription is then:

1. ALL C AD and

2. - ( (() C AD) A (() C ALL)))

ro construct the corresponding axiom in predicate calculus we need predicates that describe the
sets: At L and A To handle the first we take ALL to be a predicate that is true of all individuals in the

D'

domain (Vx.ALL(x)). A domain, (1). is consistent with what is known if it contains all the individuals

referred to by A. According to McCarthy, the domain consist of 1) all the constants mentioned in A, 2)

all the individuals resulting from the application of any function symbol, f, mentioned in A to one of the

constants of 1). and 3) those constants denoted by induction schemas (e.g., P(O) and P(n) D

P(Succ(n))).

Finally. McC-rthy [McCarthy 80al describes a way of constructing a predicate formula, 4) C AD, that
is ti e lust in ca'o tho domain ) saFtisfies the above three conditions. '7 The resulting axiom is then:

iS L tie y u in . the ions.at The reutn Axo isthn

1N nithy ,hi,; the ,,, icale , ( A_ to he Axion,(,i,) A A Axiom(r) is Ihe conpinclio, of senlenc,;s ''(i) for e;ich

,x 1hus, A'n'rir('t'),.ovf,:,,,onitiun; I) and 2)at,ovo A'  (ca lled hl12 ve
I tii

za tio n .
of A '.011 ,tprct h) -I') cov '1 coni(tlihoi J), rd i formtd by repl;cing 'inch unixts ril quantifier "Vx in A by "Vx (,I,(x) D"
,dod VIh teXI.,t'Ill. klu thier " tW.' 1 in A by Ix (,,(x) A



•-, Vd(((l C_ Al) A Vx.((ld x) ) Al (X))) D VX (AlI (X) (1)(X))).

10.2. Individual Circumscription

A secoml(1 possible use of miniimality we reler to as indivichial cit,:1msc t)tici. PredIicale

circumscription concerns itself with the minimal set of individuals that satisfy a predicate P. Similarly,

individual circumscription concerns itself with the minimal set of predicates that are true of an

individual I. Mole precisely, individual circumscription states that the set of all predicates P that ate

true of an inchvidual i.s the smalle;t set of predicates that are consistent with the known facts A.

One example of the utility of individual circumscription appears in the domain of hardware

troubleshooting. Suppose we want to determine that a certain component is working. By

circumscribing all the properties of the components, we can say that the component works unless

one of these properties is a member of a class of failure properties. In addition. one might use a

technique similar (but not identical) to individual circumscription to circumscribe all instances of the

two place predicate CONN[ CrFD(x,y) that mention a particular node, N. This provides us with the set of

all connections to N, and can be used, for example, when applying Kirchoff's Current Law to N. 18

Let A, be a set, each of whose elements is a set of predicates, such that each of the predicates
being true of the individual I is consistent with what is known. In addition, let PROPERTY-OF-I represent

the minimal set of predicates true of I. then the semantics of individual circumscription is:

1. PROPERTY.OF-I E A and

2. -'(t(.(((1) E A,) A (,l) C PROPURTY-OF-I)))

To construct the corresponding axiom in predicate calculus we need predicates that describe the
sets: PROPERTY OF-I and A rOPinrY OF-I is defined to be a predicate on predicates that satisfies the

:---

second order axiom, "For all predicates P, rROPERTY.OF-I is true of P, iff P is true of

I "(i.e.,PROP'FRTY OF i(P) = P(l)). Recall that A, is a set, each of whose elements is a set of predicates P,

such that P(I) follows from A (where A is a set of first order axioms). Taking (0 to be a set of

predicates. then (P C A, can be constructed as a predicate formula consisting of the conjunction of

sentences, P(I) D (1)(P), for each predicate P in the set of first order axioms A. That is, () I) AI if (0

contains every predica. P mentioned in A that is true of I. Individual circumscription is then stated as

a second order axiom quantifying over all predicates P, and all predicates on predicates t), such that:
V(4.(((tP C A,) A VFP.(e)(P) D PHOPL rY or- i(P))) D VP.(PrIor'LEr Ol-I(P) = ( (P))). (20)

" " ' " " " ' ' 1 8 K i i c h o ft ' , ( C. t i f e, n t I a ,, , . itw ; I l i -it t h e s t im o f th e c mt r o nl t : - ir nh o aI n o d o I s, zt O , w h e wv t h e ' r e ' I s' a" i 0 i o nt al s o c i a, l e d v ,, t h

"'. 1"3~~~e ( h tea n i0Hil (. ,iii-icted to the ood-l, individua;'l riC l lplltioll J( Wh; on.11 , tl hingsjF C0-c"A(t l to tile nfol
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lIn this sec:tion we have explored the application of the niiniinality condiltion (developed for predlicate

circtinmscriplioii to two other aspects of conjectural reasoning. A tlhr(I technique. a.xiol

cri CI 1nt I ci lon, is explore(d later durinlg the discoission about the ways that ru our(e limited a( nis

foCus on relevant information. Each of these techniqLs allow a s(t of facts to be circu ii ncribed

along it different dimension: predicates, individuals, axioms aid the domain itself. I he next section

examines the claim that circumscription is a form of non monotonic reasoning.

11. Circumscription and Non-Monotonic Reasoning

McCarthy and otheis have described circumscription as a form of non-monotonic reasoning. In this

section we examine the notion of monotonicity and how it relates to circumscription. McCarthy

(dline.10 monotonicity as follows:

If a s-ernl' nc' q follows from a collection A of sentences and A C B, thenr q follows from Br In the notation of proof theory. it
A I -q and A C B. then I f q.

Thus, in a monotonic logic, if it follows from a set of sentences A that all cats are friendly, then this

will still follow if an arbitrary set of sentences are added to A.

Predicate circumscription, however, defines a notion of inference different from traditional logics

called circumscriptive inference (I--p). We write A f-p q if the sentence q follows from the result of

circumscribing P in A. This implies that q is true in all models of A that are minimal in P. Unlike the

normal notion of inference, circumscriptive inference is non-monotonic. The reason for this is best

seen through an example. In the original missionary and cannibal problem we used circumscription

to dhtermine that the boat was working, based on the fact that we had no evidence to the contrary.

However, if after carefully examining the boat we saw that it had a gaping hole, then we would no

longer believe that the boat was working. Thus, using circumscriptive inference, a statement that
%follows from a collection of facts A no longer follows when that collection is expanded to a larger set

B --in other words, circumscriptive inference is non-monotonic.

The argument for the non-monotonicity of circumscription can be somewhat deceptive. It is true

that lhe notion of circunmscriptive inference as it is defined above is non-tionotonic; however, does it

Iaccurately reflect how circumscription is applied in first order logic (FOL)? The problem is that

ctr(utnitcripttve inference manages to sweep a small but very important axiom under the rug, namely

the predicate circutnscription axiont. If we let C denote the axiom that results in circumscribing P

;n A, then we can rewrite circumscriptive inference in terms of reILular inference as fo;lows:

A -P q =- (A AC)- q

T ht t i,,., q follows from A and the inlan:tiation of the circumscription axion schena with A and P. If

U
" ' '
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we then take B to be a superset of A and say that it is not tie case that B F--, q, then this is equivalent

to saying that it is not true that (B A Cl.3 ,) -- q. Thus. although A is a subset of B, it is not the case

that (A A CA,) is a subset of (B A C ). I hat is, if we ci cumscribe A and then add more sentences

to get B, then we must remove the old circumscription axiom C A, before circuLscribing the resulting

set. Thus, from this viewpoint the argument that circumscription is nonimonotonic is invalid. 19

The reason this discussion is important is that it raises a more general issue, that of making

assumptions explicit. The reason that circumscription appeared non-monotonic is that we were

hiding away the axioms that distinguished circumscription in the first place. The problem with hiding

these assumptions is that when an inconsistency arises in the state of our world knowledge we are

not able to consider these assumptions as possible causes. In most cases it is exactly these

', assumptions that have proven to be faulty. In these cases we want to be able to examine our

assumptions and make a conscious decision about what to do next.

12. Computing with Circumscription

One of the most significant contributions of circumscription is that it provides a precise

formalization of an interesting form of conjectural reasoning. The importance of such a formalization

is that it allows us to explore both the expressiveness and the computational properties of a particular

kaspect of common sense reasoning. The discussion thus far has been heavily weighted towards the
analysis of circumscription's expressiveness. During this discussion we have seen how the notion of

predicate circumscription and the more general notion of minimality encompasses a broad class of

conjectural reasoning including negation by failure, default reasoning, and (according to Reiter) the

4 ,closed world assumption. In addition I have identified two common kinds of questions answered

using circumscription. The first consists of determining the set of all individuals that satisfy a

circumscribed predicate, while the second involves determining the truth of a circumscribed

predicate about a particular individual. Finally, we have seen how the notion of minimality used in

predicate circumscription can also be used to formalize other, similar types of reasoning.

During this discussion, however, I have essentially ignored the computational cost involved in using

% .. circumscription. This section focuses on the computational aspect of ciicumscription by examining

the ways in which circumscription is used and analyzing some of the computational costs involved.

To give this topic proper jusiice would require a much more extensive presentation than I have time to

give here; thus. I will concentrate on the major issues, pointinq to other publications on more detailed

19
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points. I he interested reader is (irected to lNon Monotonic 841 for a collection of some of the most - --"

iW:%ei1t work on this topic.

VVth f.w exceptions, intelligent agents in the real world are resource limited. Thus for

circumscription to be of practical use it must be effectively computable. Before jumping into the

details of circumscription's computational properties it is useful to reexamine for a moment its

motivation.

The need for circumscription (and the other rules of conjecture discussed) arises from the need to

reason based on incomplete information. Given an incomplete description of the set of individuals

satisfying a particular property, circumscription is ao intuitively satisfying assumption about how to

complete this set based on a notion of "simplicity". What the circumscription axiom provides us with

is a precise way of stating this assumption. Given a predicate P and a set of axioms that we want to

circumscribe over, the circumscription axiom is typically used to determine the set of all individuals

that satisfy the predicate. To accomplish this, one first constructs a predicate (1) describing a set of

individuals and then uses the circumscription axiom to show that (1) is equivalent to P, (where P is the

circumscribed predicate we're interested in). This, in turn, is accomplished by instantiating the

circumscription axiom schema with a specific A, P and (1), and then showing that the antecedent of

the axiom follows from what is known. Thus the major steps in using circumscription are 1) selecting

a predicate P to be circumscribed, 2) selecting a set of axioms, A, to circumscribe over, 3) generating

(1), and 4) showing that the antecedent of the instantiated axiom follows from what we know.

The selection of a predicate to be circumscribed over is based on the particular domain being

worked in and the problem being solved. Often circumscription is invoked when trying to prove a

statement involving a predicate that has several possible extensions. In this case the predicate is

circumscribed with the goal of coming up with a unique extension.

In all of the examples provided by McCarthy the set of axioms that are circumscribed over is the set

of all the axioms known. This is not surprising; McCarthy's paper focuses on dealing with incomplete

informatioit. At no point are resource limitations or other forms of incompleteness considered; rather

It is assuen;d that the agents being modeled are logically complete. Thus it would only make sense

that an agjent would use all the known information available. Of course, a physically limited agent may

not be able to consider all the information available to him, and thus must focus ill onm those axioms

that appear "relevant" to the problem. This topic is discussed in detail in section 13.2.

Potentially the largest computational bottle neck ill using circumscription is the selection of the

predicat ,. Circunscriplio is a very powerful nwch;misn, as McCarthy demonstrates in on,. of his

examples where he show-, that the induction axiom on the natural inumbers is a special cas e of

.............................................
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i% circumscription. However, is. expressive power can make (icuniscriptioni vory exptiisive to

compute with in the general case. If, in se:irchling nor all nnal extension!; of 1), tie circuiniscriptiol

axiom is used as the test part of a rand 1om1 genuiate and test proces:;. then the generation of

preicates (1) is equivalent to L)C j tliiicjmg all pos'.;ible pre(icate expru-ssionsl A I||l||be. r of ie:;,iarchers

have recently studied the problem of selecting (1 while restricting the class of axioms to which

circumscription is applicable. As discussed earlier, Heiter Ileiter 82] claims that, if the set of axioms

A is restricted to be horn in P then the closed world assumption is implied by circumscription. If in

fact this is the case (a possible counter example to this claim appeared in section 8.3). then the

technique of predicate completion developed by Clark IClark 781 can be used to construct a (1) that is

guaranteed to be equivalent to P. In addition heuristic techniques for dealing with cases where A is

not horn in P have been recently (liscussed in INaqi 851. The importance of this type of technique is

that they produce an instantiation for (1) that is equivalent to P, while avoiding the costly generate and

test process described above.

For many of the cases where circumscription is applied there exists a unique minimal extension for

P. McAllester [McAllester '? points out that the mu calculus provides a decision procedure for

determining whether or not a set of axioms has a unique minimal extension for P [Park 76]. This

provides a characterization of an important class of axioms and warrants further investigation.

Once the circumscription axiom is instantiated, the remaining step is to show that tile axiom's

antecedent (i.e., C1 - Ap) A Vx.((P(x) D P(x))) logically follows from what is known. For resource

.' limited agents it is not possible, except in restricted domains, to deduce all logical consequences

from the facts at hand. Thus even in those cases where the antecedent follows, the agent may give up

before proving that it is true. This issue is raised in section 14 during the discussion of Konolige's

work on resource limitations.

If, instead of trying to completely characterize P, circumscription is used to determine the truth of P

for a particular individual, then the technique proposed in section 7.2 is particularly useful, since it

! 'avoids the need to search for an instantiation of ,l),. By using this technique the proof that P(a) is false

is equivalent to proving the axiom resulting from Stbstituting every occurrence of P(x) in A with ((x

a) A P(x)). This is Hinuch simpler than first going through the random generate and test process

described above to find an instantiation for (P.

This section has examined a number of the major computational costs incurred when using

circumscription. At one point during the discussion I mentioned the fact that the selection of the set

of axioms, A, that are being circumscribed depends on the necessity of a res;ource limited agent to

focus his attention. Focusing one's attention involves making deductions based only on a small set of

A.. .... -
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relevant facts. while ignoring ani y facts irrelevant to the problem. hi otdt to formalize the notion of

"focusing one's attention" the logic formalism must provide a means of de!scribing the truth

derivation process, thiat is. the d(erivability of a fact from a specific set of axioms. Konolige provides

such a formalism. I he pi opertits of this foi ialisin and its applicability to various forms of conjectural

reasoning is the topic of the next section.

13. Relevance Incompleteness

McCarthy's work on circumscription focuses on the problem of making decisions based on

must cope with several other forms of incompleteness dme to physical limitations. The focus of

Konolige's work [Konolige 84j, [Konolige 821 is on a formal system that can be used to model several

of these limitations. Konolige addresses three forms of incompleteness which he refers to as: 1)

relevance incompleteness, 2) resource limited incompleteness, and 3) fundamental logical

incompleteness. Relevance incompleteness occurs when an agent has available all the necessary

information to deduce the desired consequences, but restricts his set of knowledge in such a way that

the deduction is no longer possible. Resource limited incompleteness occurs when " . an agent has

the inferential capabilities to derive some consequence of his beliefs but simply does not have the

computational resources to do so." Finally. fundamental logical incompleteness occurs when an

agent has a logically incomplete or inconsistent inference procedure. Relevance incompleteness is

explored below, while the other two forms of incompleteness are explored briefly in the next section.

The life of a typical individual is cluttered with an incredible number of inconsequential facts, far too

many to cope with as a single body of knowledge when solving any sizable problem. The treasured

piece of knowledge about the song on the second track of the flip side of a Supertramp album, which

was so helpful during last night's trivial pursuit game, is not going to do one bit of good during the

next morning's calculus exam. Thus one must be able to determine what information is relevant for a

particular situation. For example in the missionary and ;n nal problem, one immediately

determines that knowledge about noras, rivers and transportation is relevant, while last night's dinner

and the mating patterns Mf overweiqlht penguins are riot. Thus to solve the missionary and cannibal

problem we "circUtmscribe" a col!. ction of facts that appear useful, considering ail others to be

' " irrelevant to the probleim at h id. Konolige provides a fornalization of this idea which he refers to as

Ct; uc;.Cr rip! 'e iij (10rance.
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~' ~ 13.1. Circumscriptive Ignorance

Predicate circumscription is used to draw a circle around a set of facts that are believed to be true,

considering anything outside of the circle to be false. Similarly using circumscriptive ignorance, a

, 'circle is drawn around a set of facts such that any facts outside of the circle are considered to be

- irrelevant to the problem. Thus, if the desired result cannot be deduced from the set of circumscribed

facts, tl, n it is assumed that the result is not deducible from any larger set. More precisely, let B be a

set of axioms that are known ("believed") and let A be a subset of B that are considered to be

* relevant. By circumscribing the relevant facts A w ,n deducing P we say that, if P does not follow

from A then P does not follow from B. For example, crcumscriptive ignorance might be used to say

something like, "At night, if I can't find a missing needle under the street light, then I can't find it at

all," or "If he can't figure out the riddle with all the clues he's been given then he is just not going to

,* be able to figure it out."

, To formalize circumscriptive ignorance we must be able to make an explicit statement about the

derivability of a fact P. Furthermore, it is necessary to be able to specify a particular set of facts that P

is being derived from. To accomplish this Konolige introduces what he refers to as the

circumscription operator. The operator I will use in this discussion (denoted by angle brackets) is a

simplified version of Konolige's operator, which ignores for the moment the issues of 1) resource

limitations, and 2) modeling the beliefs of multiple agents. The issue of resource limitations is

addressed in the next section. The intended meaning of the circumscriptive atom, <'>P, is that the

sentence P follows from the set of sentences r, that is F I- P. Similarly, -(<I'>P) means that P does

not follow from r. It is important to note that the circumscriptive atom, <F)P, is only semi-decidable

using the axiomatization of first order predicate calculus. Thus proving -(<r>P) requires that P is not

derivable from F, an undecidable question. In reference [Konolige 82], the circumscription operator

is incorporated into a propositional modal logic based on Sato's 1(4 [Sato 76], a logic that has been

proven to be decidable. Taking B to be a base set of axioms representing what we know, and A to be

the set of axioms that are being circumscribed over, then circumscriptive ignorance is expressed as:

<B>A D (<A>P = <B>P)

In the forward direction this says that, given that the relevant set of facts A is a subset of what we

know (A follows from B), then if the desired fact P follows from A, then P also follows from what we

know. This is certainly true for any monotonic logic, since anything that follows from a set of axioms

also follows from a superset of those axioms. The reverse direction is more interesting and says that

(again given that A follows from B) if P cannot be inferred from A, then P cannot be inferred from what

S.,we know. This statement differs from the formalization provided by Konolige in that it requires A to be

a subset of what is known "<B>A D .. Without this restriction it is possible to select a set of facts

I ' . .
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A that are disloint from what we know. The interpretation of circLnscriptive ignorance then would be,

"if P cannot be inferred from a set of facts, which we possibly don't know about, then P cannot be

inferred from what we know". This, however, is not the desired semantics.

The notion of circumscriptive ignorance is very similar to that of failure by negation [Clark 781.

Failure by negation says that if P cannot be inferred from what is known then P is false. Using

Konolige's circumscription operator in a manner analogous to circumscriptive ignorance, we can

restrict the proof of the truth of P to a subset of what we know. Failure by negation then says that if P

cannot be inferred from A (a subset of what we know) then P is false. Thus, the difference between

the two techniques is that failure by negation makes the stronger conclusion that P is false, while

circuinscriptive ignorance says that P cannot be inferred. Negation by failure can also be used (as it

is in the closed world assumption) to say that the only facts that are true are those that follow from the

facts A. By analogy, circumscriptive ignorance can be used to say that those facts that are derivable

from A are all that can be derived.

The ability, provided by the circumscription operator, to make explicit statements about the truth

derivation process played an essential role in formalizing circumscriptive ignorance. The

circumscription operator also allows us to formalize several other forms of conjectural reasoning not

possible in standard first order logic. Two such rules of conjecture are the topics of the next two

sections.

13.2. The Relevant Axioms: Restricting the Scope of A in Circumscription

In section 8 we examined ways of focusing the circumscription axiom on the relevant set of

predicates and individuals in the domain. In this section we examine a way of focusing on the

relevant set of axioms to which circumscription is applied.

As was mentioned in section 12, when predicate circumscription is being applied by an
"omnipotent" agent, the selection of A, the facts that are being circumscribed is the set of all things

that the agent knows about. In other words, the agent will want to use all of the available information

to reason with. On the other hand, a resource limited agent, often cannot afford the cost of wading

through all the inforrmation available. In addition there may be some additional cost incurred in

acquiring the knowledge, such as searching through reference libraries or performing experiments.

Thus, in these situations the agent must restrict the set of axioms, A, to those that he considers

relevant, based on properties of the particular problem.

Examining the predicate circumscription axiom of equation (1) we note that, although it is possible

to select any set of axioms to be circumscribed over, it is not possible to restrict the set of axioms

4k1,," •C.-
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used to pr ove the antecedent of the circumscription axiom. IhuS, we are restricting the set of axioms

A used to test the consistency of the circumscrt)e( predicate P thereby reducing our confidence that

P s correct. Yet at the same time we are still burdened with the cost of con sidering all of our

knowledge in proving that our "guess" for P is minimal (that is, (1) P). In other words we get the

worst of both worlds: a weakening in !ogical completeness, without any gain in computational

efficiency.

Recall that the reason for restricting the set of facts A to a subset of what is known is to reduce the

computational burden of using circumscription in the first place. Thus we would like to assume that

the facts A are the only facts relevant to the problem and completely ignore everything else we know

in applying predicate circumscription. Konolige provides us with exactly the right framework to

accomplish this. To achieve the desired result Konolige's circumscription operator is used to restrict

the deduction of the antecedent of the circumscription axiom so that it is true only if it follows from the
relevant axioms A. This produces an axiom that combines McCarthy's predicate circumscription and

".-- Konolige's circumscriptive ignorance:

V(I).(<A>(((D E Ap) A Vx.(I(x) D P(x))) D Vx.(P(x) D 1(x))). (21)

Thus the above axiom changes the meaning of predicate circumscription from "it follows from what

we know that P is minimal in A," to "it follows from A that P is minimal in A"

13.3. Axiom Circumscription - Communicating Ideas Effectively

In earlier sections I have discussed three types of circumscription: 1) Predicate circumscription,

which minimizes the set of individuals that have some property, 2) Domain circumscription, which

minimizes the set of individuals in the domain and 3) Individual circumscription, which minimizes the

set of properties that a particular individual has. Using Konolige's circumscription operator I now

introduce a fourth type of circumscription, related to the notion of a minimal set of axioms used to

deduce a particular fact. Due to an agent's physical limitations, there is a computational cost

incurred when an intelligent agent makes a set of deductions. If this agent interacts with other

intelligent agents, then there is an additional cost due to the finite bandwidth of the communication
channel. The tradeoff between these two costs is discussed in section 14. In this section I assume

that the cost of making deductions is negligible, and instead focus on the problem of minimizing the

communication cost.

One problem in communicating an idea is that there is a huge amount of negative information that, if

stated explicitly, will be very expensive to communicate. This issue is of great concern to researchers

studying database systems [Gallaire 781, and was the topic of section 7.3.
%"N'
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A second problem involves the cost in commnLMicating a sufficient amount of inlormation such that

the desired meaning is conveyed. fo minimize communication costs, while conveying a particular set

of ideas. we would like to transmit the rininnium aniount of informationr necessary to infer tile ideas.

(i.e., we would like to eliminate irrelevant information). Notice in the previous sentence that the magic

words, meininize and irrelevant appear once again. To formalize the idea of minimizing transmitted

information, I draw both from the ideas of McCarthy on circumscription and the ideas of Konolige on

", relevance. I will refer to the formalization of this type of conjecture as axiom circumscription.

Let P be a set of ideas that we would like to convey and let A be the set of facts that we

communicate in trying to convey P Then our goal is to provide a formal statement of the idea: "The set

of facts A. uijsed to communicate the idea P is minimal. " To formalize this statement I need to define 1)

what it means for "facts A to communicate the idea P" and 2) what it means to be minimal. I will take

the statement "tle facts A communicate the idea P" to mean that the sentence P can be inferred from

A, or using Konolige's notation <A>P. Next I use the notion of minimality discussed in section 10, i.e.,

S is minimal in AOK if:

1. S E AOK and

2. C().((1 C AOK) A (P "is strictly smaller than" S)))

ACK is taken to be the set of all axioms that 1) follow from what is known, and 2) can be used to

derive S. Thus the condition for the set of axioms () being an element of AOK is stated as "i) A <>S."

In addition, a set of axioms [I is smaller than a second set I', if B follows from I' (i.e., <I'>B), and B is

strictly smaller than I' if, in addition, it is not the case that I' follows from 13 (i.e., <I'>B A <B>').

Finally, we can construct an axiom, similar to that of predicate circumscription, that captures this

semantics (where (P1 is quantifying over all sentences):

V(l.(( > A <(D>S A <A>A ) D (A - i)). (22)

The axiom above states that any set of known axioms (f that can be used to deduce S and that

follows from A is ectuivalent to A. Adding the restriction that A is a known set of axioms such that S

can be deduced from A (i.e., AA<A>S), then A is the minimal set of known axioms that S can be

deduced from.

One thing this axiom doesn't take into account is the fact that the agent being communicated with

already has some knowledge of his own. We would like to avoid restating all of his world knowledge

when communicating our idea. Taking B to be the knowledge of this second agent, then axiom

circumscription becomes:
20
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" ' A A<AAB>S (23)

V(.((1 A <(IAB>S A <AA[3) ) (A (1)))

where the first equation says that S follows from A taken together with 13. and the second equation

"". says that A is the minimal set of axioms satisfying this condition. Axiom circunscription conveys the

idea that a set of sentences A is logically compact, that is, there is no set of sentences (not logically

equivalent to A) that convey only a subset of the ideas that A conveys and yet convey the desired set

S-. of ideas S. This idea occurs over and over again in real life. For example, when writing a paper, the

author will iterate through several dralts in the pursuit of a document that states clearly and concisely

the desired meaning. If this author fails to achieve this goal, and the ideas are sufficiently significant.

then other authors (or students taking area exams), will pick up the task.

Of course, there is still much that this axiom doesn't capture. For example. the natural numbers can

be defined using an induction schema or by explicit enumeration of an infinite number of individuals.

It is clear that the induction schema is a more concise description, yet the two are logically equivalent,

and thus would be considered equivalent from the viewpoint of axiom circumscription. Thus

-" conciseness must take into account the cost in physically transmitting an idea, which is more closely

linked to the syntax of the sentences used to capture the idea than the meaning of these sentences.

In addition, in the above scenario, the author's goal included clarity, as well as conciseness. Many

advanced graduate mathematics texts have been written that are concise and convey the desired

meaning, and yet are incredibly difficult for most people to read. For example, we might say that a

concise statement of the majority of electronics is the set of Maxwell's equations. The problem here

is that the above axioms do not account for the cost of the agent on the receiving end being able to

derive the desired meaning from the set of sentences that have been communicated. Fixing this

problem does not simply involve changing a few ternis in the above axiomatization. The reason is that

first order logic provides no means of modeling the cost of an inference, thus it is impossible to

formalize the notion of minimizing the computation involved in "understanding" the idea being

communicated. The problem of modeling forms of resource limited reasoning similar to this is the

topic of the next section.

14. Resource Limited Incompleteness

Suppose for a moment that you are a freshman and it is your first day of classes. As you sit in a

large lecture hall for your first class, your math professor walks in, writes a few fundamental axioms

on the black board, and then a moment later announces that he has finished teaching you the course

% ,material for that semester and class is dismissed. Much to your surprise (and delight) the professor
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also anoI Iunces thlat the final exam has been canceled since he is Sie that everyone in attendance

now has a firm grasp of the material and its consequences.

'This scenario seems preposterous to most of us, yet the actions of the professor are consistent with

a model of reasoning based on first order logic. The problem with this model is that it does not take
pinto consideration any of the many types of limitations of physical agents. In this section I summarize

Konolige's efforts at avoiding this mistake in his formalism, focusing primarily on its relevance to

circumscriptive reasoning. (A full account of this topic is beyond the scope of this paper as fit would

appear that this author is somewhat resource limited).

Our friend the piofessor suffers a number of problems similar to those of more traditional logic

systems. The reason that he wrote only a few lines on the blackboard is that he assumed one could

easily deduce all logical consequences of what he wrote, that is he assumed that the students were

logically complete. Furthermore, he assumed that everyone in the classroom could perform these

deductions instantaneously. Finally, there was no need to test the students since it was assumed that

their inference rules were logically sound. It is clear to most of us that humans do not think this way.

-Thus whcn trying to provide a formal theory modeling physically limited agents it is important that the

theory takes into account these limitations. Konolige identifies two forms of incompleteness related

to this discussion. The first is referred to as resource limited incompleteness and occurs when "... .

an agent has the inferential capabilities to derive some consequence of his beliefs but simply does not

have the computational resources to do so." The second limitation he refers to as fundamental logical

incompleteness, which occurs when an agent has a logically incomplete or inconsistent inference

procedure.

Al has taken basically two approaches to the problem of dealing with resource limitations. The first

approach involves weakening the expressive power of the language used to model a portion of the

agent's reasoning process. An example of this is Krypton [Brachman 83], a knowledge

representation system developed by Brachman and Levesque. One of the results of this research

effort was to characterize a number of restricted definitional languages. During this research it

became quite apparent that performing inference with even seemingly simple languages was

computationally intractable (e.g., np-complete). Ilrachman 841I However, the languages that have

proven to be effectively computable (and even those that haven't) have not been sufficiently

expressive for most domains.

A second approach taken by Al has been to weaken the inference power of a system while leaving

the expressive power of the language intact. A simple example of this are chess programs with some

number of levels of look ahead. A second example in the 1-1INOT operator in micro-planner [Sussman -a-

%.
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701 ,which roughly said: Iry tlo piovo A. II you ill. as, ulmni it) A ai pfovCd. This is very similar to failure
by negation, except that the test for failure has been weakened from, "does not logically fulluw," to

1"cannot be proven by micro-planner." The problem with THNOT is that there exists no statement of

what it means for micro-planner to prove something, other than reading the code itself.

The approach taken by Konolige is not really an approach at all, but a framework in which to explore

either of the two approaches discussed above. Konolige provides a formal syntactic system with the

goal of being able to describe precisely a wide class of systems like micro-planner, and thus be able

to make statements about their logical and computational characteristics. The contribution of

Konolige's formalism is that it allows one to make explicit statements about logical incompleteness

and belief.

-' .14.1. Consequential vs Derivational Closure

To account for logical incompleteness, Konolige replaces consequential closure with the weaker

constraint of derivational closure. Konolige points out that logical consequence is a semantic notion

which states that A is a logical consequence of B if B holds in all models of A. On the other hand,

derivational consequence is a syntactic notion about the ability to derive a fact from another fact and

a set of syntactic rules. In Konolige's formalism an agent is modeled by a deduction structure

consisting of a set of sentences representing the agents base beliefs, and a set of deduction rules that

operate on these base beliefs to construct other beliefs. For an agent to be derivationally closed

* .. means that any sentence derivable from the initial set of beliefs using the deduction rules is also a

member of the agent's beliefs.

The motivation for relaxing the constraint of consequential closure is clear: physically limited

agents cannot deduce all logical consequences of everything they know. The motivation for

derivational closure is less clear. Konolige states that "the chief motivation for requiring derivational

closure is that it simplifies the technical task of formalizing the deduction model." It is rather

unfortunate that Konolige provides no compelling examples of how this new form of closure simplifies

the formalization process, and thus must be taken on faith.

One thing that derivational closure does provide is the ability to model a wide class of systems. In

those cases where the set of rules are shown to be logically complete, the notions of consequential

closure and derivational closure are equivalent, and all the problems of decidability are inherited. At

the other end of the spectrum, if a system is provided with no deduction rules then the system

becomes regular syntactic, that is,* an agent believes a fact only if it is a member of its base beliefs.

. 'Q. This provides an appropriate model for a simple database query system based on syntactic retrieval.
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14.2. Derivational Closure and the Formalization of Conjecture

As discussed in the previous section, Konolige provides an operator, the circum,-;ctiption operator,

that makes it possible to talk about the derivation process explicitly. The effect that derivational

closure has on this operator is that the operator no longer refers to logical consequence, but instead

makes statements about derivability from a base set of rules. Thus something may be a logical

consequence of something else and yet not be derivable. Furthermore, if the inference rules are not

sound, then it may be possible to derive something that is not a logical consequence of what is

known.

It is important for several of the rules of conjecture discussed earlier to be able to make explicit

statements about the derivation process. For example, we can describe THNOT using the same

statement as the one used to describe negation by failure. That is. letting B represent what we know,

both rules are equivalently stated as:

(<B>P D -1 P.

These two techniques are then distinguished by the set of rules used to model the agent. For

example, using a set of axioms that are logically complete provides us with a formalization of failure

by negation, while constructing a set of axioms that describe micro-planner provides a formalization

of THNOT.

The interpretation of the circumscription operator to mean derivability as opposed to logical

consequence also places a more realistic interpretation on axiom circumscription. Recall that axiom

circumscription said roughly that the set of sentences A we want to use to communicate an idea P to

an agent with knowledge B, is the minimal set of sentences that P logically follows from. This

statement, however, did not take into consideration the derivability of P. Thus based on this

statement, the scenario where the professor conveyed the knowledge of a math course by stating a

*few fundamental axioms would be perfectly reasonable.

On the other hand, using the circumscription operator to refer to derivation, as opposed to logical

consequence, axiom circumscription acquires the more desirable interpretation that A is the minimal

set of sentences used to derive P by the agent being communicated to. If the agent being talked to is

a child then the information communicated to him will be sufficiently close to P that the child is

required to make very few deductions in determining P. On the other hand, if the conversation is

technical and the agent being communicated to is well versed in the field, then it may be adequate for

A to be a single phrase.

The prim:1ry effect that the weakening of conse(iential closure has on predicate circumscription is

that it no longer (Juarantees that we will be able to show that a predicate (1 is equivalent to the minimal
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extensions of P in A. The reason for this is that. even though the antecedent of the circumscription

axiom may follow from what is known (and thus the equivalence stated in the axiom's consequence),

it is not necessarily the case that the antecedent will be derived. In this case the promise of

Konolige's formalism is that it will provide a framework in which to characterize those cases when

circumscription can be confidently applied, given a particular model of resource limitations. Under

consequential closure the minimality condition used in predicate circumscription is based on the set

of predicates consistent with what follows from A. Under derivational closure the minimality condition

", can instead be based on the set of predicates consistent with what is derivable from A. Thus
Konolige's formalism provides us with a final dimension along which we can focus the

circumscription axiom, that is, the proof derivation process.

-,.' This also suggests an iterative, heuristic technique for computing the circumscription of P, given

that the logic is derivationally closed. The technique essentially starts with an initial guess for the

circumscribed P and then goes through a relaxation process to find a minimal predicate. A
4r
,:,7; reasonable guess for P might be constructed using a technique like Clark's predicate completion

discussed earlier. In some cases, where the data base is not horn in P, Clark's technique will produce

* an extension of P that is inconsistent with what can be derived. If this occurs then, using information

gained from the inconsistency, the extension of P is expanded to include one more individual and the

deduction rules are used to test for consistency. This process is continued until the set becomes

consistent with what is known, at which point a minimal extension has been founded. This process is

repeated with each possible augmentation of the initial guess to find all minimal extensions of p.21 On

the other hand, if the initial guess starts out being consistent, then the process moves in the other

direction by reducing extensions until an inconsistency is found. Given the fact that the deduction

rules may not be logically complete, the agent may not be able to recognize an inconsistency when it

occurs. Thus using this heuristic may produce an extension for P that is smaller than the actual

minimal extension.

15. Conclusion

In this paper I have discussed a number of ideas related to the problem of modeling the

incompleteness of intelligent agents in the physical world. During this discussion I have focused on

the work of McCarthy on formalizing rules of conjecture for dealing with incomplete information, and

the work of Konolige on modeling resource limited reasoning. McCarthy uses the notion of miniinality

to capture the intuition that "the set of things that have a particular property is the smallest set that is

21 It is also neces.saiy to have some memas, of detecmininq how many minimal extenions P has. As discussed e;I lier, the

Mu c;rlcrlu:., [1,'ok 7G] may provd'' stch a technitple for determining when P has a single extensn.
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consistent with what is known." This intuition is captured by a formal rule of conjecture, predicate

circumscription, which is expressed as an axiom of first order logic. This formalism is particularly

(esirable in that it works within the framework of an existing logical system that is well understood.

On the other hand. to model resource limited reasoning Konolige must modify the formalism of

traditional logics. This modification takes on two forms: 1) the relaxation of the constraint that the

logic be consequentially closed, and 2) the addition of a set of modal operators for making explicit

statements about belief and the proof derivation process. The expressive power of this new logical

system is demonstrated by formalizing the notion of circumscriptive ignorance -- if something is not

derivable from a set of relevant facts then it is not derivable.

In this paper I have analyzed the semantics of McCarthy's predicate circumscription, Konolige's

circumscriptive ignorance, and several related formalisms, such as negation by failure, the closed

world assumption, default reasoning and THNOT. In addition I have extended circumscription along

several dimensions. First, the predicate circumscription axiom was modified to allow the ability to

focus on a particular set of relevant predicates, individuals, and axioms to be circumscribed over.

This is accomplished by, a) restricting the set of individuals that are being circumscribed over, b)

expanding the number of predicates circumscribed and c) restricting the set of axioms used in

performing the circumscription. Second, the notion of maximality (the inverse of minimality used in

predicate circumscription) was used to formalize default reasoning. Third, the concepts of minimality

and relevance were used to describe several novel forms of conjectural reasoning. Finally, predicate

circumscription, as well as several other rules of conjecture, were extended, using Konolige's

circumscription operator, to account for resource limitations. This provides a synthesis between the

formalisms of McCarthy and Konolige applied to conjectural reasoning.
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